共計 10014 個字符,預計需要花費 26 分鐘才能閱讀完成。
本篇內容介紹了“mysql 中一個 RR 模式下 UPDATE 鎖范圍擴大案例分析”的有關知識,在實際案例的操作過程中,不少人都會遇到這樣的困境,接下來就讓丸趣 TV 小編帶領大家學習一下如何處理這些情況吧!希望大家仔細閱讀,能夠學有所成!
一、前言
這里只研究下鎖的模式, 借用葉老師的表和語句
mysql select * from t1;
+----+----+----+----+
| c1 | c2 | c3 | c4 |
+----+----+----+----+
| 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 |
| 3 | 3 | 3 | 0 |
| 4 | 2 | 2 | 0 |
| 6 | 8 | 5 | 0 |
| 7 | 6 | 6 | 10 |
| 10 | 10 | 4 | 0 |
+----+----+----+----+
CREATE TABLE `t1` ( `c1` int(10) unsigned NOT NULL DEFAULT 0 ,
`c2` int(10) unsigned NOT NULL DEFAULT 0 ,
`c3` int(10) unsigned NOT NULL DEFAULT 0 ,
`c4` int(10) unsigned NOT NULL DEFAULT 0 ,
PRIMARY KEY (`c1`),
KEY `c2` (`c2`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
二、RR 模式下的鎖模式
我們先來看看下面兩個語句的執行計劃
mysql desc update t1 set c4=123 where c2
+----+-------------+-------+------------+-------+---------------+------+---------+-------+------+----------+------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+------+---------+-------+------+----------+------------------------------+
| 1 | UPDATE | t1 | NULL | range | c2 | c2 | 4 | const | 2 | 100.00 | Using where; Using temporary |
+----+-------------+-------+------------+-------+---------------+------+---------+-------+------+----------+------------------------------+
mysql desc update t1 set c4=123 where c2
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+------------------------------+
| 1 | UPDATE | t1 | NULL | index | c2 | PRIMARY | 4 | NULL | 7 | 100.00 | Using where; Using temporary |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+------------------------------+
下面兩個語句的執行計劃不一致,主要注意
type:index 和 range
key:PRIMARY 和 c2
我們先要清楚 type:index 和 range 的區別
這里借用我以前寫的一篇文章
http://blog.itpub.net/7728585/viewspace-2139010/
type:index 不使用索引 B + 樹結構, 只使用索引葉子結點鏈表結構進行掃描,我們知道在索引的葉子結點有一個葉子結點之間的雙向指針,
并且葉子結點的數據是排序好的。他和 ALL 的方式類似,訪問效率并不高,其主要的應用場景為用于避免 order by 使用 using filesort
也就是避免排序。他是一種訪問數據的方式,和 range、const、ref、eq_ref 等一樣。
type:range 顯然用于范圍查詢比如 between 等,其訪問方式是考慮到索引的 B + 樹結構的,需要通過根結點 – 分支節點 – 葉子結點的順序訪問
其實 const、ref、eq_ref 等一樣也需要這樣的定位過程。
我大概畫一個圖,示意圖而已,但是足以解釋我的意思
1.jpg
剩下我們需要考慮 RR 模式下,如下語句有哪些所結構:
mysql desc update t1 set c4=123 where c2
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+------------------------------+
| 1 | UPDATE | t1 | NULL | index | c2 | PRIMARY | 4 | NULL | 7 | 100.00 | Using where; Using temporary |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+------------------------------+
RECORD LOCKS space id 532 page no 3 n bits 80 index PRIMARY of table `test`.`t1` trx id 348084 lock_mode X(LOCK_X)
Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info bits 0
0: len 8; hex 73757072656d756d; asc supremum;;
Record lock, heap no 2 PHYSICAL RECORD: n_fields 6; compact format; info bits 0
0: len 4; hex 00000000; asc ;;
1: len 6; hex 000000054abd; asc J ;;
2: len 7; hex ba00000e180110; asc ;;
3: len 4; hex 00000000; asc ;;
4: len 4; hex 00000000; asc ;;
5: len 4; hex 00000000; asc ;;
Record lock, heap no 3 PHYSICAL RECORD: n_fields 6; compact format; info bits 0
0: len 4; hex 00000001; asc ;;
1: len 6; hex 000000054abd; asc J ;;
2: len 7; hex ba00000e18011d; asc ;;
3: len 4; hex 00000001; asc ;;
4: len 4; hex 00000001; asc ;;
5: len 4; hex 00000000; asc ;;
Record lock, heap no 4 PHYSICAL RECORD: n_fields 6; compact format; info bits 0
0: len 4; hex 00000003; asc ;;
1: len 6; hex 000000054abd; asc J ;;
2: len 7; hex ba00000e18012a; asc *;;
3: len 4; hex 00000003; asc ;;
4: len 4; hex 00000003; asc ;;
5: len 4; hex 00000000; asc ;;
Record lock, heap no 5 PHYSICAL RECORD: n_fields 6; compact format; info bits 0
0: len 4; hex 00000004; asc ;;
1: len 6; hex 000000054abd; asc J ;;
2: len 7; hex ba00000e180137; asc 7;;
3: len 4; hex 00000002; asc ;;
4: len 4; hex 00000002; asc ;;
5: len 4; hex 00000000; asc ;;
Record lock, heap no 6 PHYSICAL RECORD: n_fields 6; compact format; info bits 0
0: len 4; hex 00000006; asc ;;
1: len 6; hex 000000054fb4; asc O ;;
2: len 7; hex 3300000c430b49; asc 3 C I;;
3: len 4; hex 00000008; asc ;;
4: len 4; hex 00000005; asc ;;
5: len 4; hex 0000007b; asc {;;
Record lock, heap no 7 PHYSICAL RECORD: n_fields 6; compact format; info bits 0
0: len 4; hex 00000007; asc ;;
1: len 6; hex 000000054fb4; asc O ;;
2: len 7; hex 3300000c430b6b; asc 3 C k;;
3: len 4; hex 00000006; asc ;;
4: len 4; hex 00000006; asc ;;
5: len 4; hex 0000007b; asc {;;
Record lock, heap no 8 PHYSICAL RECORD: n_fields 6; compact format; info bits 0
0: len 4; hex 0000000a; asc ;;
1: len 6; hex 000000054fb4; asc O ;;
2: len 7; hex 3300000c430b8d; asc 3 C ;;
3: len 4; hex 0000000a; asc ;;
4: len 4; hex 00000004; asc ;;
5: len 4; hex 0000007b; asc {;;
我們這里先不考慮表級意向鎖,只考慮這里打印出來的鎖結構
行鎖為:lock_mode X(LOCK_X)|LOCK_ORDINARY(next key lock)
同時我們注意到 0: len 8; hex 73757072656d756d; asc supremum
那么我們用一張圖來表示
2.jpg
實際上我們從圖中可以看出這種情況下 RR 模式下是主鍵上所有的行都加上了 NEXT_KEY LOCK, 所以你其他任何 DML 操作都會鎖定
那么如下語句的鎖結構呢?
mysql desc update t1 set c4=123 where c2
+----+-------------+-------+------------+-------+---------------+------+---------+-------+------+----------+------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+------+---------+-------+------+----------+------------------------------+
| 1 | UPDATE | t1 | NULL | range | c2 | c2 | 4 | const | 2 | 100.00 | Using where; Using temporary |
+----+-------------+-------+------------+-------+---------------+------+---------+-------+------+----------+------------------------------+
1 row in set (0.01 sec)
如下:
-----TRX NO:348661 LOCK STRUCT(1)(Add by gaopeng)
TABLE LOCK table `test`.`t1` trx id 348661 lock mode IX
-----TRX NO:348661 LOCK STRUCT(1)(Add by gaopeng)
RECORD LOCKS space id 532 page no 4 n bits 80 index c2 of table `test`.`t1` trx id 348661 lock_mode X(LOCK_X)
Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info bits 0
0: len 8; hex 73757072656d756d; asc supremum;;
Record lock, heap no 6 PHYSICAL RECORD: n_fields 2; compact format; info bits 0
0: len 4; hex 00000008; asc ;;
1: len 4; hex 00000006; asc ;;
Record lock, heap no 8 PHYSICAL RECORD: n_fields 2; compact format; info bits 0
0: len 4; hex 0000000a; asc ;;
1: len 4; hex 0000000a; asc ;;
-----TRX NO:348661 LOCK STRUCT(1)(Add by gaopeng)
RECORD LOCKS space id 532 page no 3 n bits 80 index PRIMARY of table `test`.`t1` trx id 348661 lock_mode X(LOCK_X) locks rec but not gap(LOCK_REC_NOT_GAP)
Record lock, heap no 6 PHYSICAL RECORD: n_fields 6; compact format; info bits 0
0: len 4; hex 00000006; asc ;;
1: len 6; hex 0000000551f5; asc Q ;;
2: len 7; hex 71000002700ad1; asc q p ;;
3: len 4; hex 00000008; asc ;;
4: len 4; hex 00000005; asc ;;
5: len 4; hex 0000007b; asc {;;
Record lock, heap no 8 PHYSICAL RECORD: n_fields 6; compact format; info bits 0
0: len 4; hex 0000000a; asc ;;
1: len 6; hex 0000000551f5; asc Q ;;
2: len 7; hex 71000002700af3; asc q p ;;
3: len 4; hex 0000000a; asc ;;
4: len 4; hex 00000004; asc ;;
5: len 4; hex 0000007b; asc {;;
我們可以清晰的觀察到 INDEX c2 上包含
lock_mode X(LOCK_X)|LOCK_ORDINARY(next key lock)
其行包含了 C2:8/C1:6 C2:10/C2:10 還包含 supremum
同時傳遞到了主鍵 PRIMARY 鎖結構為
lock_mode X(LOCK_X)|rec but not gap(LOCK_REC_NOT_GAP)
也就是主鍵上只是鎖定了 C1:6 C1:10 這兩行,并且不是 gap lock,如果需要畫圖就是如下:
3.jpg
我們可以發現鎖定的范圍小了很多很多,這種情況如下語句:
select * from t1 where c1 = 7 for update;
(這里葉老師寫的 c2= 7 不知道是不是寫錯了)
是可以完成的,因為不會落到 PRIMARY 的鎖定范圍內。
三、RC 模式下的鎖定模式
這里只是看看 RC 模式的鎖定結構如下:
mysql desc update t1 set c4=123 where c2
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+------------------------------+
| 1 | UPDATE | t1 | NULL | index | c2 | PRIMARY | 4 | NULL | 7 | 100.00 | Using where; Using temporary |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+------------------------------+
1 row in set (0.22 sec)
-----TRX NO:348596 LOCK STRUCT(1)(Add by gaopeng)
RECORD LOCKS space id 532 page no 3 n bits 80 index PRIMARY of table `test`.`t1` trx id 348596 lock_mode X(LOCK_X) locks rec but not gap(LOCK_REC_NOT_GAP)
Record lock, heap no 6 PHYSICAL RECORD: n_fields 6; compact format; info bits 0
0: len 4; hex 00000006; asc ;;
1: len 6; hex 0000000551b4; asc Q ;;
2: len 7; hex 3300000c430c03; asc 3 C ;;
3: len 4; hex 00000008; asc ;;
4: len 4; hex 00000005; asc ;;
5: len 4; hex 0000007b; asc {;;
Record lock, heap no 7 PHYSICAL RECORD: n_fields 6; compact format; info bits 0
0: len 4; hex 00000007; asc ;;
1: len 6; hex 0000000551b4; asc Q ;;
2: len 7; hex 3300000c430c25; asc 3 C %;;
3: len 4; hex 00000006; asc ;;
4: len 4; hex 00000006; asc ;;
5: len 4; hex 0000007b; asc {;;
Record lock, heap no 8 PHYSICAL RECORD: n_fields 6; compact format; info bits 0
0: len 4; hex 0000000a; asc ;;
1: len 6; hex 0000000551b4; asc Q ;;
2: len 7; hex 3300000c430c47; asc 3 C G;;
3: len 4; hex 0000000a; asc ;;
4: len 4; hex 00000004; asc ;;
5: len 4; hex 0000007b; asc {;;
我們可以清晰的看到 RC 模式下不考慮隱含鎖的情況下只是鎖定了 PRIMARY 的相應的行:
lock_mode X(LOCK_X) locks|rec but not gap(LOCK_REC_NOT_GAP)
注意這里 NOT GAP
“mysql 中一個 RR 模式下 UPDATE 鎖范圍擴大案例分析”的內容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業相關的知識可以關注丸趣 TV 網站,丸趣 TV 小編將為大家輸出更多高質量的實用文章!